A Survey and Comparison of Optimization Methods for Solving Multi-Stage Stochastic Programs with Recourse
نویسنده
چکیده
In the last decade, multi-stage stochastic programs with recourse have been broadly used to model real-world applications. This paper reviews the main optimization methods that are used to solve multi-stage stochastic programs with recourse. In particular, this paper reviews four types of optimization approaches to solve multi-stage stochastic programs with recourse: direct methods, decomposition methods, Lagrangian methods and empirical-distribution methods. All these methods require some form of approximation, since multi-stage stochastic programs involve the evaluation of random functions and their expectations. The authors also provides a classification of the considered optimization methods. While decomposition optimization methods are recommendable for large linear problems, Lagrangian optimization methods are appropriate for highly nonlinear problems. When the problem is both highly nonlinear and very large, an empirical-distribution method may be the best alternative. A Survey and Comparison of Optimization Methods for Solving Multi-Stage Stochastic Programs with Recourse
منابع مشابه
An Adaptive Partition-Based Approach for Solving Two-Stage Stochastic Programs with Fixed Recourse
We study an adaptive partition-based approach for solving two-stage stochastic programs with fixed recourse. A partition-based formulation is a relaxation of the original stochastic program, and we study a finitely converging algorithm in which the partition is adaptively adjusted until it yields an optimal solution. A solution guided refinement strategy is developed to refine the partition by ...
متن کاملMulti-Objective Stochastic Programming in Microgrids Considering Environmental Emissions
This paper deals with day-ahead programming under uncertainties in microgrids (MGs). A two-stage stochastic programming with the fixed recourse approach was adopted. The studied MG was considered in the grid-connected mode with the capability of power exchange with the upstream network. Uncertain electricity market prices, unpredictable load demand, and uncertain wind and solar power values, du...
متن کاملSolving stochastic programs with integer recourse by enumeration: A framework using Gröbner basis reductions
In this paper we present a framework for solving stochastic programs with complete integer recourse and discretely distributed right-hand side vector, using Gröbner basis methods from computational algebra to solve the numerous second-stage integer programs. Using structural properties of the expected integer recourse function, we prove that under mild conditions an optimal solution is containe...
متن کاملApproximation Algorithms for 2-stage and Multi-stage Stochastic Optimization
Stochastic optimization problems provide a means to model uncertainty in the input data where the uncertainty is modeled by a probability distribution over the possible realizations of the data. We consider the well-studied paradigm of stochastic recourse models, in which the realized input is revealed through a series of stages and one can take decisions in each stage in response to the new in...
متن کاملThe Sample Average Approximation Method for Stochastic Programs with Integer Recourse
This paper develops a solution strategy for two-stage stochastic programs with integer recourse. The proposed methodology relies on approximating the underlying stochastic program via sampling, and solving the approximate problem via a specialized optimization algorithm. We show that the proposed scheme will produce an optimal solution to the true problem with probability approaching one expone...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJORIS
دوره 4 شماره
صفحات -
تاریخ انتشار 2013